

Inverted Valve

Chesterton Stationary Equipment Sealing Solutions

Power-Fossil Chesterton 1601, 5100, & 725 Case Study 006 SE

Challenge

- Leakage from an invertedly installed valve let water get into the actuator and resulted in damage. Client was facing replacement cost of \$20K
- Steam blowing and/or water was dripping into the bottom of the MOV, causing repair costs of up to \$75K/day
- Client's current graphite packing caused stem pitting and created a leak path. The packing was rendered ineffective

Chesterton 1601 Packing, Chesterton 5100 Split Carbon Bushing, Chesterton 725 Nickel Anti-Seize Reconfigured the stuffing box which had an

Solution

- Reconfigured the stuffing box which had an eleven-ring set to five rings and a carbon bushing to fill the box
- Replaced failed packing with 5 rings of 1601, a reinforced graphite braided tape with a built-in passive corrosion inhibitor to minimize stem pitting
- Applied Chesterton 725, a high-performance nickel anti-seize, during installation on new packing studs for proper torque application

Results

After six months of operation, the packing solution is still leak free with greatly reduced downtime. Due to valve's inverted orientation, the new corrosion-inhibiting products saved both the stem and the actuator.

Cost Savings

Stem work avoidance: \$8,000

New actuator avoidance: \$10,000

Repairs avoided in 3 months: \$18,000

\$36,000

Inverted valve.

Chesterton 1601.

\$=USD

Leak free.